7
Securing the Software Supply Chain: P

Research, Outreach, Education

S3Cce2

Laurie Williams*, Yasemin Acar', Michel Cukier*, William Enck*,

Alexandros Kapravelos®, Christian Kistner®, Dominik Wermke*
*North Carolina State University, Raleigh, NC, USA
"Paderborn University, Paderborn, Germany and George Washington University, DC, USA
University of Maryland, College Park, MD, USA
§Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT

Recent years have shown increased cyber attacks tar-
geting less secure elements in the software supply chain
and causing fatal damage to businesses and organiza-
tions. Past well-known examples of software supply
chain attacks are the SolarWinds or log4;j incidents that
have affected thousands of customers and businesses.
The goal of this response is to aid the Open-Source Soft-
ware Security Initiative (OS3I) in identifying focus
areas for prioritization by sharing the outcomes of re-
search, outreach, and education by the NSF-sponsored
Secure Software Supply Chain Center (S3C2) since its
inception in 2022. The S3C2 experiences and outcomes
to date provide the authors with a unique purview of
open challenges in securing the software supply chain.

1 INTRODUCTION

The modern world relies on digital innovation in almost
every human endeavor, including critical infrastruc-
ture. Digital innovation has accelerated substantially as
software is increasingly built on top of many layers of
reusable abstractions, including libraries, frameworks,
cloud infrastructure, artificial intelligence (AI) modules,
and others, giving rise to software supply chains where
software projects depend on and build upon other soft-
ware projects. Software developers did not anticipate
how the software supply chain would become a deliber-
ate attack vector. The software industry has moved from
passive adversaries finding and exploiting vulnerabili-
ties contributed by honest, well-intentioned developers
to a new generation of software supply chain attacks
where attackers aggressively implant vulnerabilities di-
rectly into open-source software components and infect
build and deployment pipelines.

Focused research is needed to develop fundamental
principles, techniques, and tools to close the attack vec-
tors in the software supply chain. Plummeting trust in
the software supply chain may decelerate digital inno-
vation if software organization feel the need to divert
resources to reduce their own supply chain risks, with
the potential to fragment the software ecosystem.

The goal of this response is to aid the Open-Source
Software Security Initiative (OS3I) in identifying fo-
cus areas for prioritization by sharing the outcomes
of research, outreach, and education by the NSF-sponsored
Secure Software Supply Chain Center (S3C2) ! since its
inception in 2022. The S3C2 experiences and outcomes
to date provide the authors with a unique purview of
open challenges in securing the software supply chain.

2 NSF-SPONSORED SECURE
SOFTWARE SUPPLY CHAIN
CENTER (S3C2)

The Secure Software Supply Chain Center (S3C2) is a
large-scale, multi-institution research enterprise funded
through the National Science Foundation Frontier pro-
gram in 2022. The center consists of researchers at
North Carolina State University (NCSU), Carnegie Mel-
lon (CMU), and the University of Maryland (UMD),
with a close collaborator at Paderborn University in
Germany.

S3C2 has the following vision: The software indus-
try can rapidly innovate with confidence in the
security of its software supply chain.

We will achieve this vision through three goals.

e Research Goal: To aid the software industry to re-
establish trust in the software supply chain through

Lhttps://s3c2.org/

https://s3c2.org/

the development of scientific principles, synergistic
tools, metrics, and models in the context of the hu-
man behavior of supply chain stakeholders.

o Workforce Goal: To aid the software industry to
create a diverse workforce of technical leaders and
practitioners educated and trained in secure software
supply chain methods through research, hands-on
education, and outreach initiatives with academic,
government and industry partners.

e Community Goal: To aid the software industry to
foster community-wide adoption of evidence-based
secure practices through feedback cycles with indus-
try and government, cross-organizational communi-
cation, technology transfer, and hands-on education.

To achieve these goals, we have structured our work
into four thrusts: code dependencies of software prod-
ucts; build infrastructure; impact on the software in-
dustry; and education and outreach. In the following
subsections, we summarize the work we have done
to date on each of these thrusts and our perspective
associated open challenges based on our experiences.

3 S3C2 THRUST 1: CODE
DEPENDENCIES OF SOFTWARE

PRODUCTS

This thrust is focused on the attack vector through
which attackers inject vulnerabilities into upstream
open-source components such that they can be lever-
aged at scale to attack upstream projects.

Modern software products commonly have tens to
hundreds of direct and transitive code dependencies.
Ensuring code dependencies are free of known vulner-
abilities is labor-intensive, requiring dedicated person-
nel. Simultaneously, malicious code dependencies have
become increasingly common due to typo-squatting,
dependency confusion, and project take-over attacks.
Our work seeks to aid practitioners with useful and
high-fidelity information to ensure product security.

3.1 What We Have Learned

3.1.1 Low SBOM quality, produced but not consumed.
Much attention has been focused on the Software Bill
of Materials (SBOM) since the release of the US White-
house Executive Order 14028 [2] in May 2021, which
specified that organizations wishing to sell to the US
government must provide an SBOM. Later that year,

Secure Software Supply Chain Center (S3C2)

we conducted a series of software supply chain security
summits (see Section 5). One of the five key challenges
raised by the groups was, “Leveraging the SBOM for
Security” [8]. The group acknowledged that generat-
ing SBOMs is technically hard. However, they felt the
deeper challenge would be making SBOM production
more than a compliance checkbox. After two years and
enormous attention from the industry, many tools to
produce SBOMs have been created with widely differ-
ent outputs — there is no agreed expectations on the
quality of SBOMs, and currently, SBOMs remain largely
a compliance checkbox.

Currently, SBOMs are produced but largely not con-
sumed. How might they be consumed to aid security?
Consider an application A with an SBOM SBOMy and
a vulnerability database feed VDB that contains infor-
mation about known vulnerabilities in software and
software dependencies. In an ideal world, a software
consumer runs a function f(SBOMjy, VDB) to learn if
application A is vulnerable to a known vulnerability,
likely in one of its dependencies. Ideally, this function
would not just identify whether the dependency with
the vulnerability was used but also how it was used and
whether this specific use is exploitable. Using this infor-
mation, the software consumer can put in place mitiga-
tions or update to a newer version of the application A
- or attest that the vulnerability is not security-relevant
for the application, such as through a Vulnerability Ex-
ploitability eXchange (VEX) [4] statement. Mitigations,
such as selective sandboxing of dependencies, can be
particularly effective if the source of the application is
unavailable, patches are not available, or deployment
of patches is logistically challenging. The developer of
application A can also run a similar process for all of the
application A’s dependencies and proactively update
dependency versions or apply patches as needed.

Unfortunately, this ideal world is not reality. The cur-
rent process is messy and error-prone, exacerbated by
the low quality of SBOMs and missing data. As a result,
even if the software consumer attempted to consider
f(SBOM,, VDB), taking action on the results would
cause significant manual effort for both themselves and
the developer of application A, while not actually im-
proving security in most cases.

3.1.2 Missing information for vulnerability analysis.
The data quality problems are two-fold. First, many
SBOMs are created from the final binary application.

Securing the Software Supply Chain

Source Composition Analysis (SCA) tools producing
these SBOMs use a range of heuristics to determine
which libraries were used to build the application, often
by looking for signatures of files in containers. This
approach is error-prone and perhaps counter-intuitive,
given that the SBOM is being provided by the company
that has the source code for the application and is per-
forming the build. Build processes often contain exten-
sive models of dependencies. More accurate SBOMs can
be created by deriving them during the build process
when more complete information is available. Many
practices like copying files into a project (a process
commonly known as “vendoring”) might provide ob-
stacles that can be overcome with more comprehen-
sive build tools and provenance tracking. Generally, an
SBOM created at build time will have more complete
information than an SBOM created based on binary
artifacts. SBOMs should also include information for
both direct and transitive dependencies, a practice that
is not ubiquitous.

Second, public vulnerability databases are severely
lacking. It is common for practitioners to be given false
security reports claiming their application is vulnerable
to known vulnerabilities in software dependencies. The
existence of a vulnerable software dependency does
not mean that the corresponding vulnerable code is
actually being used in a way that makes the application
vulnerable if that vulnerable code is being used at all.
Therefore, practitioners are frequently asked to spend
unnecessary time fixing problems that are not there,
creating notification fatigue. Vulnerability Exploitabil-
ity eXchange (VEX) [4] has emerged to address this
challenge. A developer can include a VEX statement
to communicate to a customer that their application
is not vulnerable to the vulnerability in the vulnerable
dependency. However, this process is currently manual
in discovering, in stating, and in consuming.

The VEX process can be made more automated with
static and dynamic analysis tools (possibly integrated
into the build process), but this relies on having reliable
and detailed information about vulnerabilities and their
specifics, for example, where the vulnerability is located
in the dependency and what kind of data may trigger it.
Only with such information can tools detect whether
the vulnerability is reachable, exploitable, or whether
mitigations such as additional input sanitation or local
sandboxing can help.

3.1.3 Automated tools can improve vulnerability infor-
mation for downstream analyses. For example, many
vulnerabilities are fixed without being assigned CVE
IDs or similar vulnerability identifiers. SCA companies
commonly curate their own “enhanced” vulnerability
databases, adding additional vulnerability fixes that
they discover. In academia, a line of research seeks to
discover “silent vulnerability fixes.” For example, we
recently published an approach called Differential Alert
Analysis (DAA) [7] that uses commercial-of-the-shelf
Static application security testing (SAST) tools to iden-
tify when a developer commits code that fixes a vul-
nerability. With limited resources, we identified 111
silent security fixes in the NPM, Go, PyPI, and Maven
ecosystems. We also showed that despite low-precision
SAST tools, DAA produces high-precision results and
that increasing SAST tool recall increases DAA recall.
Our ongoing efforts have shown how Large Language
Models (LLMs) such as CodeBERT can further discover
silent vulnerability fixes.

Public vulnerability databases are not just lacking in
their number of vulnerabilities but also in the informa-
tion available for the included vulnerabilities. A critical
piece of information is the code commit that fixes the
vulnerability, often called the “vulnerability fixing com-
mit” (VFC) or simply the “patch link.” VFCs help practi-
tioners mitigate vulnerabilities by enhancing SCA tools,
enabling patch presence verification, and new state-of-
the-art techniques such as enabling few-shot bug repair.
Unfortunately, we found that 63% of security advisories
in the GitHub Security Advisory Database (GHSA) for
open-source software do not have patch links, severely
limiting downstream analyses. Given that GHSA is of-
ten seen as one of the best, if the best, vulnerability
database for having complete and accurate information,
research is needed to identify novel methods of recov-
ering patch links for known vulnerabilities. To this end,
we have created a tool called VFCFinder [6], which uses
machine learning to backfill VFCs for a given security
advisory. VFCFinder provides a list of the Top 5 poten-
tial VFCs. The VFC is in that list over 96% of the time.
VFCFinder’s top choice is accurate 80% of the time, and
if there are fewer than 15 commits between releases,
over 90% of the time. We used VFCFinder to backfill
patch links for over 300 security advisories on GHSA,
all of which have been accepted by the GitHub security
team.

3.1.4 Sunsetting dependencies. Developers often adopt
open-source packages as dependencies, implicitly as-
suming that in addition to the free code, they will re-
ceive free support and maintenance of the package in
perpetuity. However, when a software package is no
longer maintained, it turns from a free resource em-
powering rapid innovation into a liability. Developers
often use signals such as project popularity to select
packages to depend on, but this is no guarantee for con-
tinued maintenance. Maintainers regularly disengage
from open-source projects for many reasons, including
changing interests and life circumstances [11].

With a constantly increasing number of open-source
software packages, the amount of packages that need
to be maintained increases. The number of open-source
maintainers is also still growing, but it is unclear that
growth will keep up. Despite heavy investments in
open source and research in open-source sustainability
(mostly on how to keep projects alive and recruit new
maintainers), it is not clear that there is a long-term vi-
able model either with volunteers or with raising funds
to pay maintainers. In practice, it is likely unavoidable
that some, even popular projects will become aban-
doned. For example, we detected over 3000 abandoned
npm packages among the most popular packages with
over 10,000 monthly downloads [10].

When developers face abandoned dependencies, they
often have little support on navigating the situation [10].
They could, among others, fork the dependency, some-
how encourage others to maintain it, or move to an
alternative if it exists — often at substantial cost. More
research and development should focus on navigating
inevitable situations where projects are no longer main-
tained, whether through deliberate sunsetting strate-
gies or community-based efforts to help developers cope
with abandoned dependencies [10].

3.1.5 Limited reliable information on malicious depen-
dencies. Beyond accidentally introduced vulnerabilities
in dependencies, a severe concern in software supply
chain security is the ability of threat actors to inten-
tionally publish new malicious packages or malicious
updates to existing packages (if they gain access to that
package). Such malicious updates may intentionally
introduce backdoors to attack any system that adopts
the dependency or updates its existing dependencies.
Past attacks have been widely discussed, especially ma-
licious package updates, which are seen as a severe

Secure Software Supply Chain Center (S3C2)

problem as they critically undermine the trust placed
in software packages after initial adoption. In practice,
almost no developer does or even would have the ca-
pacity to audit all updates to all dependencies they are
using critically.

Reported numbers of deliberate supply chain attacks
are high and reported to be increasing rapidly. However,
we have limited reliable information. Package ecosys-
tems tend to delete malicious packages once reported,
and researchers have limited access. Reports also do
not distinguish different kinds of attacks, for example
distinguishing typosquatting from malicious updates
to popular packages from packages taken down simply
as spam (a rapidly increasing category). Our initial ex-
plorations of packages removed as malicious from npm
reveal that many of them are copies of the same pack-
age under different names, and almost all of them are
new dependencies rather than updates to existing ones.
Most are taken down within minutes of their release.
More detailed reporting and automated classification
are needed to provide a more reliable understanding of
security trends in software supply chains beyond the
flashy numbers counting all attacks common in today’s
discourse. Encouraging operators of package managers
to report details and share removed artifacts with re-
searchers could provide a much better understanding.

3.1.6 Metrics to aid in component choice. A meaningful
quantitative security health score could aid in selecting
secure components. The OpenSSF Scorecard? project
automated the provision of such a score based upon
measures of the use of software security practices. How-
ever, little research has been done to determine whether
the use of security practices improves package security,
particularly which security practices have the biggest
impact on security outcomes. We developed five su-
pervised machine-learning models for npm and PyPI
packages using the OpenSSF Scorecard security prac-
tices scores and aggregate security scores as predictors
and the number of externally reported vulnerabilities
as a target variable [19]. Our models found that four
security practices (Maintained, Code Review, Branch
Protection, and Security Policy) were the most impor-
tant practices influencing vulnerability count. However,
we had low R2 (ranging from 9% to 12%) when we tested
the models to predict vulnerability counts indicating

https://github.com/ossf/scorecard

Securing the Software Supply Chain

better metrics and models are needed to inform compo-
nent choices quantitatively.

3.2 Open Challenges

Updating the version of a software dependency is not a
trivial matter. Updates occasionally break functionality
(e.g., by changing APIs) or introduce new bugs. Further-
more, most software is both a producer and consumer
in the software supply chain, and making updates can
affect downstream projects. Therefore, many projects
spend significant manual effort triaging dependencies
with known vulnerabilities to determine if the vulnera-
ble dependency is used in an exploitable way. VEX helps
with these decisions, but the current process is manual.
Novel techniques are needed to make the production
of VEX automated, accurate, and trustable. Doing so
requires significantly higher quality vulnerability infor-
mation.

Influencing the choice of software and library depen-
dencies is equally important and challenging. Depen-
dencies may be abandoned, poorly maintained, or even
malicious. It is unreasonable to expect developers to
manually research each dependency and its transitive
dependencies before use. Research is needed to iden-
tify salient features, automatically extract them from
projects, and how best to present the resulting informa-
tion to developers to inform their choices.

4 S3C2 THRUST 2: BUILD
INFRASTRUCTURE

The process and tooling that turns the code of mul-
tiple software projects into the production software
product is just as important as the code in the software
projects. This importance was highlighted with the De-
cember 2020 SolarWinds supply chain attack, where
the build process was compromised to inject malicious
code into the end product. Unfortunately, build systems
have seen relatively little attention compared to soft-
ware analysis. Our work seeks to significantly advance
the maturity of build system security by creating novel
analysis tools, identifying strong security properties,
and understanding how practitioners can adopt them.

4.1 What We Have Learned

4.1.1 Cl/CD Vulnerabilities. Modern software develop-
ment has increased in complexity and several parts of it,

such as building, testing and deploying, require automa-
tion. This is why Continuous Integration and Continu-
ous Deployment (CI/CD) pipelines have become essen-
tial to the development process. Yet these pipelines in-
troduce new code and dependencies that may introduce
security bugs, posing new risks to software projects.
We studied if code injection vulnerabilities are preva-
lent in Github Actions by building a static taint analysis
system called Argus. We focused on Github because it
is the most popular platform to host code and offers,
via Github Actions, its CI/CD framework, automation
tasks, called workflows, that have become popular.
There are significant challenges in automatically an-
alyzing CI/CD pipelines for security problems. First,
these pipelines, also known as Github Workflows, con-
sist of jobs, each containing a sequence of steps, leading
to a non-linear execution model. In addition to that, a
job can depend on one or more other jobs, creating a
complex interwoven build system. Automatically ana-
lyzing this new execution model for code injection vul-
nerabilities requires a new Control Flow Graph (CFG)
that considers the non-linear execution semantics of
workflows. A workflow can also reference third-party
Actions and can participate in sensitive operations, such
as access to untrusted input and passing data to dan-
gerous sinks. GitHub also supports three types of Ac-
tions: JavaScript, Composite (combine multiple work-
flow steps within one action), and Docker. This poses
significant challenges in analyzing GitHub Actions.
Our team has developed ARGUS [12], a framework
designed to systematically examine code injection vul-
nerabilities in GitHub Workflows and Actions through
staged static taint analysis. ARGUS effectively pinpoints
potential threats by tracking the flow of untrusted data
from sources to sensitive sinks. An essential feature of
ARGUS is its Workflow Intermediate Representation
(WIR), which addresses the non-linear execution seman-
tics of workflows. We conducted a large-scale evalua-
tion involving 2,778,483 Workflows (1,014,819 reposito-
ries) that utilized 31,725 Actions. ARGUS detected secu-
rity problems in 27,465 Workflows from 16,003 reposito-
ries during this evaluation. We subjected 5,643 of these
workflows to manual verification, and our findings con-
firmed the existence of code injection vulnerabilities in
5,298 of them. Among these vulnerabilities, 4,307 were
of high and medium severity, posing a significant risk of
compromising the respective repositories. Additionally,

we identified 80 vulnerable Actions, which rendered
any Workflow that uses them vulnerable.

4.1.2 Reproducible Builds. The Solarwinds attack in
2020 highlighted the large amount of trust placed in
build systems, with attackers injecting malicious logic
into the product binary signed with Solarwinds’ offi-
cial code signing keys. Reproducible builds provide a
strong foundation to build defenses for arbitrary attacks
against build systems by ensuring that given the same
source code, build environment, and build instructions,
bitwise-identical artifacts are created. We conducted a
series of 24 semi-structured expert interviews with par-
ticipants from the Reproducible-Builds.org project [9].
From the interviews, we learned that commonly en-
countered obstacles to reproducible builds include build
directory name inclusion and cryptographic signatures
on the technical side, as well as the need for patience
and good social communication on the interaction side.
Many interviewees mentioned positive interactions
with upstream projects and other developers, although
some specifically noted that upstream communication
required patience. As for helpful factors, most men-
tioned were being self-effective, (being determined, pos-
sessing the skill-set to progress reproducible builds),
and having good communication with other developers.
For transitive dependency problems, concrete technical
documentation could be achieved by the pervasive use
of SBOMs to indicate all software included in build-
ing an artifact, so the transitive dependencies could be
traced over a dependency graph. Some interviewees
suggested that the overall awareness and buy-in for
reproducible builds were lacking and that even with
the increase in the prevalence of software supply chain
attacks, reproducible builds are not yet widespread.

4.2 Open Challenges

Software threat models need to include all code, as vul-
nerabilities can also be found in the CI/CD codebase.
However, assessing risk in build code can be challeng-
ing. For example, GitHub Actions can execute Actions
in containers, which can introduce unique vulnerabil-
ities, including privilege escalation and container es-
cape scenarios. Current research has been limited to
GitHub Actions, and there is a need to expand tools to
other CI/CD ecoystems and cross-ecosystem analysis.

Secure Software Supply Chain Center (S3C2)

Such tools will allow practitioners to proactively mit-
igate risks and ensure the robustness of their CI/CD
pipelines.

Even if the build code is free of vulnerabilities, the

build servers themselves could be compromised. Reproducible-

Builds provide a strong primitive for protecting against
such subversion. Unfortunately, the code that builds
software has many sources of non-determinism that
prevents Reproducible-Builds from being wide-spread.
While there has been significant effort in making core
dependencies reproducible, a significant effort is needed
to take Reproducible-Builds the last mile.

5 S3C2 THRUST 3: IMPACT ON

THE SOFTWARE INDUSTRY

To achieve the S3C2 vision and to impact society, S3C2
must continuously interact with the software indus-
try. Our central approach for engaging with industry
is to annually conduct three Secure Software Supply
Chain Summits. The goal of the Summits is to enable
sharing between industry practitioners having practical
experiences and challenges with software supply chain
security; to help form new collaborations between in-
dustrial organizations and researchers; and to identify
research opportunities. The Summits are conducted
under Chatham House Rules.

Between 2021 and 2023, we have conducted six Se-
cure Software Supply Chain Summits: four with indus-
try practitioners and two with US government prac-
titioners. In the four industry summits, 51 different
practitioners have participated, 4 of these participated
twice; 37 organizations were represented, 13 of these or-
ganizations participated twice. In the two government
summits, 26 different practitioners have participated,
only 1 of these participated twice; 13 agencies were
represented, 4 of these participated twice. In summary,
77 practitioners from 37 industrial organizations and
13 US government agencies have participated. We have
published summaries of the Summits [3, 5, 8, 18].

5.1 What We Have Learned

In the following nine subsections, we summarize the
discussions from the three 2022-2023 Summits.

5.1.1 Executive Order (EO). The participants had a range
of reactions to the EO, particularly because not all of
the participant’s organizations sell software to the US

Securing the Software Supply Chain

government. Some practitioners stated that the EO has
been a catalyst for a security focus. Consistent with
the 2021 Summits, the participants had an overwhelm-
ing sentiment that they did not want the EO to turn
into a compliance/checkbox exercise but to drive real
change toward producing more security software prod-
ucts. However, adequate funding for these new efforts
had not been provided in some organizations.

Several industrial participants raised concerns about
the vagueness of the EO and the challenges they encoun-
tered in trying to comply with it. In the government
Summit, some participants acknowledged that when it
comes to operationalizing the EO, a lot is still “in flight”.

5.1.2 Software Bill of Materials. Industry practitioners
stated optimistic benefits from inventory disambigua-
tion and believe that SBOMs can help establish cus-
tomer trust by providing increased transparency and
integrity of their deliverables. Customers can look for
extraneous content and identify unwanted third-party
packages.

However, most of the discussions about the SBOM
revolved around concerns. There were comments and
concerns that the EO only states that SBOMs should
be created and does not describe what should be done
with that data or an articulated problem statement for
which SBOMs are a solution. One of the biggest hurdles
of SBOM:s is the overall immaturity of tooling relative
to SBOM consumption. Most industrial participants
felt the current state of SBOM was of a “compliance-
check-the-box”. A participant recently did an audit of
available SBOMs. They noted that nearly none met the
NTIA minimum requirements [15].

5.1.3 Supply Chain Standards, Guidelines, and Frame-

works. Software security standards, guidelines, and frame-

works, including 800-218 Secure Software Development
Framework (SSDF) [13], NIST 800-161 [14], Supply-
chain Levels for Software Artifacts (SLSA) [16], and Soft-
ware Supply Chain Consumption Framework (S2C2F)
[17]), have emerged to guide what organizations can do
to reduce software supply chain risk. Compliance with
the EO requires attestation to most SSDF tasks, making
the SSDF an important standard. The other most men-
tioned framework used by participants was SLSA [16]
security framework. Some practitioners still have diffi-
culty deciding what to be guided by with the numerous
standards, guidelines, and frameworks available.

5.1.4 Choosing Dependencies. Every dependency in-
troduces value and risk, and once it is incorporated into
a project, it is often hard to replace. Participants dis-
cussed a range of strategies for choosing dependencies,
and it was apparent that there were no good metrics.
The participants discussed the use of OpenSSF Score-
card security health metrics. Only one or two used
Scorecard as a metric while others evaluated how they
might incorporate it. One participant said that they
looked at Scorecard scores and measured whether or
not packages were less likely to have vulnerabilities
if their score was higher and found no relationship.
This participant’s observations were consistent with
our own studies of the relationship between Scorecard
scores and vulnerability count [19].

The government participants discussed what it meant
to use software dependencies from foreign countries,
i.e., anything not developed in the United States. There
was discussion about efforts to identify and manage
when software comes from embargoed countries. How-
ever, there was also an awareness that adversaries can
find ways around those mechanisms.

5.1.5 Updating Vulnerable Dependencies. Companies
commonly rely on different strategies and tools when
updating vulnerable dependencies. Practitioners men-
tioned scanning for vulnerabilities by using Software
Composition Analysis (SCA) tools. Multiple practition-
ers mentioned feeling overwhelmed by the number of
vulnerabilities identified by these tools in direct but
also transitive dependencies. After updating all vul-
nerabilities, a tool run the next day will may identify
more new vulnerabilities. This makes it extremely hard
for practitioners to catch up and forces them to triage
and prioritize vulnerabilities. Tooling to automatically
patch dependencies (e.g., Dependabot’s automated pull
requests) is available. However, auto-patching without
human intervention is often not an accepted practice.
Organizations need a process for staying up to date. A
participant suggested that having a good automated
test suite can enable a company to be more confident
when updating a dependency.

5.1.6 Detecting Malicious Commits. Actors of past soft-
ware supply chain attacks (e.g., SushiSwap) use mali-
cious commits to submit unauthorized changes to the
source repository. Detecting and discerning these ma-
licious commits is not always straightforward as at-
tackers often use obfuscated code, steal authentication

credentials, or use impersonation strategies to deceive
and put malicious code changes through the system.
Multiple practitioners believe a closer look at the com-
mitter’s behavior might help discern malicious behavior.
For instance, a committer’s activity, reputation, and un-
common behavior (e.g., big vs small changes, critical vs
ancillary fixes) can signal suspicious or malicious com-
mits. Machine Learning (ML) could be applied to create
appropriate tooling. Overall, the participants did not
have good solutions for detecting malicious commits.

5.1.7 Self-Attestation and Provenance. The EO requires
government contractors to attest to (1) conformity with
secure software development practices; and (2) the in-
tegrity and provenance of open-source software used
within any portion of a product. In the software sup-
ply chain context, provenance refers to not only the
identity that created each dependency and transitive de-
pendency but also the process through which each soft-
ware component was built. For example, provenance
is a key part of the SLSA framework [16], and systems
such as in-toto® can be used to capture and commu-
nicate provenance information. Industrial participants
shared concerns about ambiguity in self-attestation re-
quirements. However, many participants agreed that
the SSDF and attestation are far more foundational to
security than the SBOM.

5.1.8 Secure Build and Deploy. Build platforms and
CI/CD tools have the potential to enhance software
build integrity by establishing documented and consis-
tent build environments, isolating build processes, and
generating verifiable provenance. Most practitioners
feel comfortable in securing the deployment process
and are more worried about the build process. Overall,
companies seek guidance on secure build and deploy-
ment from the SLSA framework [16]. Most practitioners
believe reproducible builds may not be very feasible to
check whether a build has been tampered with as there
still seem to be many challenges and concerns. As of
now, only 20% of builds match bit-to-bit.

5.1.9 Large Language Models. Within the last year,
Large Language Model (LLM)-based systems, such as
ChatGPT, are increasingly used for automated code
generation. A participant expressed concerns that the
public’s accelerated use of LLM can lead to large-scale
data exfiltration. LLM system users regularly pull LLM

Shttps://in-toto.io/

Secure Software Supply Chain Center (S3C2)

output into their product and contribute their own pro-
prietary data into training data through their queries.

5.2 Open Challenges
Per the Summits, some open questions remained.

e How can attestations be made more automated?

e Can the EO be more than a compliance checkbox?

e What is the problem statement for which SBOMs
is a solution? Can tools be developed to aid in the
actionability and consumption of SBOMs?

e Can the current qualitative feel used to choose de-
pendencies be turned into a trustworthy quantitative
metric?

e Are vulnerabilities in transitive dependencies many
layers deep less risky than vulnerabilities in a direct
dependency?

e How can we better educate computer science stu-
dents about securing builds?

e How can LLMs be used to aid in software supply
chain security?

6 S3C2THRUST 4: EDUCATION

AND OUTREACH

Our Broadening Participation in Computing (BPC) ef-
forts focus on summer camps and monthly workshops
during the school year.

6.1 What We Have Learned

We have created a one-week non-residential summer
camp for middle-school students that was offered in
2023 at NCSU (July) and UMD (August). At NCSU, 24
students participated (16 males, 8 females). At UMD, 19
students participated (11 males, 7 females, and one gen-
der fluid). The campers were introduced to cybersecu-
rity, cryptography, DDoS, and ethical hacking. Campers
worked in teams on a security project. The camps in-
cluded daily demos, a campus tour, and a field trip.
We also have developed summer 2023 REU projects
for four REU students (two at NCSU, two at CMU). All
four students worked on projects related directly to the
S3C2 thrusts (managing abandoned dependencies, mea-
suring reproducible builds, measuring trust, measuring
and analyzing typosquatting, and discovering patterns
of malicious software) and were jointly advised across
institutions with joint meetings that include at least
one Co-PI at NCSU and one Co-PI at CMU (and also

https://in-toto.io/

Securing the Software Supply Chain

often Ph.D. students as mentors from both institutions).
Two of the 4 students were from demographics under-
represented in computing research.

6.2 Open Challenges

One important goal of the BPC activities and the Na-
tional Cyber Workforce and Education Strategy [1] is
the development of a more diverse cyber workforce.
We made a concerted effort to recruit from underrepre-
sented populations for our activities. In the future, we
hope to increase the number of students from demo-
graphics underrepresented in computer science in the
summer camps and the monthly workshops. We have
observed that where the outreach activities are adver-
tised might impact the student composition. We will
ensure that organizations focusing on diversity know
about these outreach activities. Creating a network of
students and families should also help recruit students
from various backgrounds.

Another challenge is the integration between the
summer camps and the monthly workshops. Students
can attend either one or both. Thus, we plan to of-
fer two one-week long summer camps back to back
at NCSU and UMD in 2024. These two camps will allow
to more easily combine new students and students who
have participated in the previous year summer camp
and/or in the monthly workshops. So the first week
would mainly include new students, and the second
week would include returning students.

7 FOCUSED RESEARCH FOR
PRIORITIZATION

We make the following recommendations for govern-
ment priorities for additional research in securing the
open-source software supply chain.

1. A public, non-proprietary vulnerability database
with community contributions. While CVE and NVD
are valuable sources of vulnerability information, they
(a) lack high-quality data, and (b) have not scaled to
meet industry demand. Many software security com-
panies maintain their own proprietary higher-quality
vulnerability feeds; however, the manual curation ne-
cessitates that they are a pay-for service. Simultane-
ously, academic research is creating methods of au-
tomating the discovery of vulnerability information;
however, it is difficult to share with practitioners. A

public, non-proprietary vulnerability database that al-
lows individual contributions from the community has
the potential to bring the open source philosophy to
vulnerability data. The Cloud Security Alliance’s Global
Security Database (GSD) is one potential model.

2. Dependency selection as a first-class decision. De-
velopers frequently give little thought to which library
dependencies the incorporate into their projects. De-
pendencies may be abandoned, poorly maintained, or
even malicious. New threats are also being introduced
as LLMs suggest library dependencies. As such, it is ex-
tremely important for developers to give consideration
to each and every dependency they include. However,
this can only be possible with more automated collec-
tion and processing of information about dependencies
and their transitive dependencies. While a single nu-
meric score may not be achievable, there is significant
room for improvement in how we communicate depen-
dency risk to developers.

3. Make the production of VEX automated, accurate,
and trustable. Vulnerability Exploitability eXchange
(VEX) has a lot of potential to help practioners by an-
notating when a dependency is vulnerable to a given
vulnerability. Currently, VEX statements are largely
written manually and often in natural language. Au-
tomating VEX saves time for all parties. However, if the
algorithms producing VEX statements are not sound,
they will lead to a false sense of security and vulnerable
software being used in production.

4. Automate attestation. Our summits with indus-
try and government stakeholders surfaced concerns
around attestation and self-attestation. Historically, at-
testations have been a paper-and-pen exercise. How-
ever, not only will such an approach not scale, but se-
curity will also be sacrificed due to interpretability. In-
stead, self-attestation should be automated to the extent
possible. One summit participant noted that “Compa-
nies are starting to do this already. The first there will
define the landscape”

5. Encourage declarative build specifications. The code
building software is just as complex as the software it-
self. While we have written automated tools to analyze
the build code of popular platforms (e.g., GitHub Ac-
tions), our tools are limited by opaque build processes
(e.g., Docker containers) and inline scripts (e.g., com-
plex Bash code). By formalizing the build process into
well-defined abstractions, verification tools can prove
the correctness (and integrity) of software builds.

6. Incentivize determinisitic (a.k.a. reproducible) builds.
Reproducible-Builds can mitigate a large portion of the
software supply chain attack surface. While it is infea-
sible to expect all software to be built many times to
verify build integrity, specific software projects exist
where the security benefit is worth the computation,
e.g., the Tor project. However, end projects cannot have
reproducible builds if their many dependencies do not
already have reproducible builds. By normalizing re-
producible builds, stakeholders can more easily choose
when they need this added security.

7. Securing supply chains using LLMs. The popular-
ity of LLM-based systems for code generation causes
a security concern of adversarial models, resulting in
tainted training data such that vulnerable code is gener-
ated and integrated into software systems. In addition
to current research efforts to mitigate that attack vector,
research should also focus on how LLMs can be used
to enhance the security of the software supply chain.

8 ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation Grant Nos. 2207008, 2206859,
2206865, and 2206921. Any opinions expressed in this
material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation.

REFERENCES

[1] July 31, 2023. National Cyber Workforce and Education Strat-
egy. https://www.whitehouse.gov/wp-content/uploads/2023
/07/NCWES-2023.07.31.pdf.

May 12, 2021. Executive Order 14028: Improving the Nation’s
Cybersecurity. https://www.federalregister.gov/documents/
2021/05/17/2021-10460/improving-the-nations-cybersecurit

2]

William Enck Yasemin Acar, Michel Cucker, Alexandros
Kapravelos, Christian Kastner, and Laurie Williams. June 2023.
S3C2 Summit 2023-06: Government Secure Supply Chain Sum-
mit. https://arxiv.org/abs/2308.06850 (June 2023).

CISA. 2022. Vulnerability Exploitability eXchange (VEX). ht
tps:// www.cisa.gov/sites/def ault/f iles/publications/ VEX_Us
e_Cases_Document_508c.pdf (2022).

Trevor Dunlap, Yasemin Acar, Michel Cucker, William
Enck, Alexandros Kapravelos, Christian Kastner, and Laurie
Williams. February 2023. S3C2 Summit 2023-02: Industry Se-
cure Supply Chain Summit. http://arxiv.org/abs/2307.16557
(February 2023).

Trevor Dunlap, Elizabeth Lin, William Enck, and Bradley
Reaves. 2023. VFCFinder: Seamlessly Pairing Security Ad-
visories and Patches. arXiv:2311.01532 [cs.CR]

(3]

10

Secure Software Supply Chain Center (S3C2)

[7] Trevor Dunlap, Seaver Thorn, William Enck, and Bradley
Reaves. 2023. Finding Fixed Vulnerabilities with Off-the-Shelf
Static Analysis. In 2023 IEEE 8th European Symposium on Se-
curity and Privacy (EuroS&P). IEEE, 489-505.

William Enck and Laurie Williams. 2022. Top Five Challenges
in Software Supply Chain Security: Observations From 30
Industry and Government Organizations. IEEE Security &
Privacy 20, 2 (2022), 96-100. https://doi.org/10.1109/MSEC.2
022.3142338

Marcel Fourné, Dominik Wermke, William Enck, Sascha Fahl,
and Yasemin Acar. 2023. It’s like flossing your teeth: On
the Importance and Challenges of Reproducible Builds for
Software Supply Chain Security. In In 44th IEEE Symposium
on Security and Privacy.

Courtney Miller, Christian Késtner, and Bogdan Vasilescu.
2023. "We Feel Like We're Winging It:" A Study on Navigating
Open-Source Dependency Abandonment. In Proceedings of
the European Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE) (San Francisco, CA). ACM Press, New York, NY.
Courtney Miller, David Widder, Christian Késtner, and Bogdan
Vasilescu. 2019. Why Do People Give Up FLOSSing? A Study
of Contributor Disengagement in Open Source. In Proceedings
of the 15th International Conference on Open Source Systems
(0SS). 116-129. https://doi.org/10.1007/978-3-030-20883-7_11
Siddharth Muralee, Igibek Koishybayev, Aleksandr Na-
hapetyan, Greg Tystahl, Brad Reaves, Antonio Bianchi,
William Enck, Alexandros Kapravelos, and Aravind Machiry.
2023. ARGUS: A Framework for Staged Static Taint Anal-
ysis of GitHub Workflows and Actions. /projects/argus/. In
Proceedings of the USENIX Security Symposium.

NIST. 2022. NIST Special Publication 800-218 Secure Software
Development Framework (SSDF). https://nvlpubs.nist.gov/nis
tpubs/SpecialPublications/NIST.SP.800-218.pdf (2022).
NIST. May 2022. NIST Special Publication 800-161 Rev 1
Cybersecurity Supply Chain Risk Management Practices for
Systems and Organizations. https://csrc.nist.gov/pubs/sp/800/
161/r1/final (May 2022).

NTIA. July 21, 2021. The Minimal Elements of a Software Bi,ll
of Materials. https://www.ntia.doc.gov/files/ntia/publicatio
ns/sbom_minimum_elements_report.pdf (July 21, 2021).
OpenSSF. 2023. Supply-chain Levels for Software Artifacts
(SLSA). https://slsa.dev/ (2023).

OpenSSF. July 2023. Secure Supply Chain Consumption Frame-
work (S2C2F). https://github.com/ossf/s2c2f (July 2023).
Mindy Tran, Yasemin Acar, Michel Cucker, William Enck,
Alexandros Kapravelos, Christian Kastner, and Laurie
Williams. Sept 2022. S3C2 Summit 2022-09: Industry Secure
Supply Chain Summit. http://arxiv.org/abs/2307.15642 (Sept
2022).

N. Zahan, S. Shohan, D. Harris, and L. Williams. 2023. Do
Software Security Practices Yield Fewer Vulnerabilities?. In
2023 IEEE/ACM 45th International Conference on Software En-
gineering: Software Engineering in Practice (ICSE-SEIP). IEEE
Computer Society, Los Alamitos, CA, USA, 292-303. https:
//doi.org/10.1109/ICSE-SEIP58684.2023.00032

https://www.whitehouse.gov/wp-content/uploads/2023/07/NCWES-2023.07.31.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/NCWES-2023.07.31.pdf
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://arxiv.org/abs/2308.06850
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf
http://arxiv.org/abs/2307.16557
https://arxiv.org/abs/2311.01532
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1007/978-3-030-20883-7_11
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://csrc.nist.gov/pubs/sp/800/161/r1/final
https://csrc.nist.gov/pubs/sp/800/161/r1/final
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://slsa.dev/
https://github.com/ossf/s2c2f
http://arxiv.org/abs/2307.15642
https://doi.org/10.1109/ICSE-SEIP58684.2023.00032
https://doi.org/10.1109/ICSE-SEIP58684.2023.00032

	Abstract
	1 Introduction
	2 NSF-Sponsored Secure Software Supply Chain Center (S3C2)
	3 S3C2 Thrust 1: Code Dependencies of Software Products
	3.1 What We Have Learned
	3.2 Open Challenges

	4 S3C2 Thrust 2: Build Infrastructure
	4.1 What We Have Learned
	4.2 Open Challenges

	5 S3C2 Thrust 3: Impact on the Software Industry
	5.1 What We Have Learned
	5.2 Open Challenges

	6 S3C2 Thrust 4: Education and Outreach
	6.1 What We Have Learned
	6.2 Open Challenges

	7 Focused Research for Prioritization
	8 Acknowledgements
	References

